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Mutual Impedance between Probes
in a Waveguide

BAISUO WANG

Absfracf —The general formulas of mutual impedance between two

probes arbitrarily located in a rectangular waveguide are given by means of

dyadic Green’s function (DGF), field transformation, and reaction concept.

The waveguide is semi-fininite. The reflection coefficient at the terminal

plane (:= O) is 11. Lengths, feeding points, and orientations of the two

probes in tbe wavegnide are all arbitrary. As examples, expressions of

mutual impedance for eight specific cases are given and dkcnssed.

I. INTRODUCTION

A N IMPORTANT PROBLEM in the design of wave-

guide components is the analysis of postlike struc-

tures in a waveguide. The problem has been studied by

many researchers [1]–[9]. Most investigators have been

interested mainly in current distributions or equivalent

impedances of posts. The mutual impedance between two

probes vertically located on the broad wall of rectangular

waveguide was studied recently by Ittipilsoon and Shafai

[10] using the vector potential ~and reaction concept. The

above investigations are extremely useful in designing mi-

crowave circuits, various filters, and antennas with specific

uses.

In this paper, the probe field distribution and mutual

coupling have been studied in detail. The general formulas

of mutual impedance between probes are given. In deriva-

tion, the DGF, field transformation, and reaction theorem

are used. The waveguide is semi-infinite. The reflection

coefficient at the terminal plane (z = O) is I’. The lengths,

feeding points, and orientations of the two probes in the

waveguide are all arbitrary.

H. THE DYADIC GREEN’S FUNCTION

The problem to be considered is shown in Fig. 1. Two

probe antennas, arbitrarily oriented, are located in a rect-

angular waveguide. Suppose the wavegui~e is of size a X b

and is filled with air (I-Lo,eO). The DGF ~ of the first kind

pertaining to the waveguide under study satisfies

v xv xF(F,7’)–k%(7,7’) =78(7–7’) (1)

where k is the free-space wavenumber, ~ is the unit

dyadic, r(x, y2z) is the field point, ~d r’(x’, Y’, z’) E the

source point. ~ satisfies the boundary conditions i? x G = O

on the guide walls (perfect conductor) (i? being the unit
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vector normal to guide walls), the reflection condition on

the te~minal plane, and the radiation condition as z + co.

The ~ may be constructed by using image theory because

the terminal plane (z = O) with reflection coefficient r

may be substituted by an image source [8], [9], [11]. With

reference to Fig. 2, the original and the image current

elements are, respectively,

f17’)=”*(f+ j+2)8(F-F’) (2)

j-(r)=--+-2)8(7-r) (3)

where j is an imaginary number. The position vector of

the image source is

~ = ix; + jy,’ + ‘2Z; = ix’+ jy’+ }y’– 2Z’ (4)

The semi-infinite waveguide with terminal reflection coef-

ficient r and current source Jxl”) is equivalent to a bi-

infinite wave~uide without terminal plane and with sources

17= ~1~’1+ ~,(r).
The Go( K F’) pertitining to a hi-infinite waveguide

without terminal and with source ~i~’) is [12] -[15]

~[fi..,.(* &)&m(+ kg)

+ fio,~,,(~ kg)&’n.(T kg)], z? .z’ (5)

where kC= [(rnn/a)2 +(rzn-/b)2]112 and kg= (k2 – k~)1i2

are the eigenvalue and wavenumber of the rectangular

waveguide, respectively. Kronnecker 80 = 1 for m or n = O

a_nd O for m and n # O. In the region where z >0, the

~01 ( F, ~) corresponding to Y--(V) is
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Fig, 1 Two probes in waveguide
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Fig, 2. The original and the image current elements

In view OJ (2)–(4), ~OZ can be rewritten. The final expres-

sion for G( F, T’) is given by

!73( r, 7-’)

=(70(ZF-’)+FO,(77)

+ .2.#k~T,$T$~(el – re2), Z?z’ (7)

where

m VX n77}’ m7rx’ n77y’
T,,, = COS— sin — T<: = COS— sin —

a b a b

m 77x n ry m7rx’ n Vy ‘

~,C = sin — Cos — T,; = sin — Cos —
a b a b

m 77x n 77y inn-x’ nwy’
~,,, = sin — sin ——— ~~ = sin — sin —

a b a b

mnv2
k,,,,, = – ~ k2=~2poco.

III. FIELD ~1 RADIATED BY PROBE 1

The coordinate system of probe 1 is Ol(&, q, (), as

shown in Fig. 1. (1 and {3 are the endpoints and (2 is the

feeding point. In the O system, the coordinates of point 01

are (X IO, YIO, Zlo ). Assume that the current distribution of

probe 1 is given by

Jqo=&?(&)8(q) (8a)

where 110 is the value of the current at the feeding point.

The electric field radiated from probe 1 is

Through tedious treatment of (9), the field ~1 for z > ~’ is

found to be

The field distribution for z < z’ is
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where

~(z) = eJ~gz F( ~ rZ) = e-jkg’ + reJ%’

S,., =s,., = t ‘iksjk, i, j=l,2,3
k=l

is the summation of corresponding term products of the

i th row and the j th row in matrix (s). (s) is a transforma-

tion between O and 01 systems. Its elements are

S12= –cos+~ S13= sin *I sin O1

Szz= –sin*l .S23 = – cos tl sinel

S32= o, S33= Cos tl~

are Eulerian angles, as shown in Fig.

3 [16], [17]. for simplification, @l has been chosen as n/2,

that is, the axis q is along the nodal liqe, directed to

NIO. Between two coordinate systems, (E., E,, E,)’=

(s)(E&, E,, Et)’ and (x — Xlo, y — Y1O, z – 210)’ =

(s)(& ~, {)’, where t indicates the transpose- parameter of

(10) and (11) are as follows:

p:)=-:%![:m ; ;Il%l

12=

1 {3
Q.,. = ~ j&sc(of(I)d Q,, = ; @ss(~)~(~) ‘~

T{,,({) = cos ~(s13{ + XIO)Sin ~(s23{ + ylO)

~,,({) = sin ~(h3&+ ‘lO)cOs ~(s23{ + hO)

T,,(f) = sin ~(s13~+ ~10)sin~(s23{+ ~10)

f(+ r~) = e-Jksfs33{+z10) * rejkg(s,,r+z,o)

f({) = ~,h(%(+ml)
~o = (Po/’’~o)2’2.

By means of triangular formula, these integrals for P and

Q can be readily evaluated.
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Fig 3. Eulerian angles.

IV. MUTUAL IMPEDANCE

In order to calculate mutual, impedance, we must de-

termine the tangent component of El along probe 2. With

reference to Fig. 1, the coordinate system of probe 2 is

02(u, U, w ). WI and W3 are endpoints, and W2 is the feeding

period point. The coordinates of point 02 in 0 system are

(x20, Y20, Z20). The current distribution of probe 2 is simi-
lar to that of probe l(eq. (8)), that is,

~(w) =fi128(u)8(u) (14a)

sink(w– wl)
120 . wl<w<w~

smk(wj-wl) ‘
(14b)

sink(wa– w)

The transformation between the O and 02 systems also

adopts Eulerian angles (4 z, 0’ = ~/2, %). The transforma-

tion matrix is signed as (t). The elements of matrix (t) are

similar to those of matrix (s), that is

tll = –sin $2 COS02 t12 = –cos+2 t13 = sin$2 sin62

t21 = Cos +2 COS92 t22 = –sin$2 t23 = –cos 42 sin02

t 31= sin 62 t32= o t33= Cos02.

The tangential component of J!?l along probe 2 is given by

EIW = ~l.fi = tlqEx + t23Ey + tssE,. (15)

Because u = u = O on probe 2, the variables (x, Y, Z) in E.,

E,, and EZ should be changed as follows:

x = t13w + X*(3 Y = t23w + Y20 z = t~jw + 220.

Through evaluation, we get, for z > z’,

E1W=XX[4dW)d W)+X42~2(W)%(W)
IJl 11

+ A3a3(w)7,.(lv)l(16)
whereas for z < z‘

E1.=~~[ %P1(w)dw)+~2~2 (w) Tx(w)
nl 17

+ B3B3(w)qs(w)l (17)
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where

‘..(w) ‘c0s~(t13w+xX3)sin~(t23w+.!+I))
L(W) =sin~(t13w +x20) cos~(t23w+Y20)

‘.,$(w) = ‘in ~(kw‘xzo)sin~(tzsw+h)

f(+ rw) = ~-J~g(’33W+Z20) f re,kg(f,,w+:,o)

By the reaction concept, the mutual impedance between

two probes is given by

1
M=–—

/
‘3E1WIZ dw

110120 ~,
(20)

where EIM, is given by (16) or (17), and 12 is given by (14).

The time factor used is e-J”r. If we desire to adopt e ‘Jut,

we need only replace j by – j in all formulas.

V. SOME SPECIFIC CASES

As examples, we discuss some useful cases. In the dis-

cussion below, suppose that the feeding points of two

probes are coincident with 01 and 02, respectively. The

heights are Al ={3 –{2({1={2 = O), k2 = W3– W2(W1= W2

= O), respectively.

Example A: Two Probes Perpendicular to the Same

Broad Wall

Suppose two probes are parallel to the y axis, with their

feeding points at (xlo, O, Zlo) and (xzo, O, Zqo), respectively,

as shown in Fig. 4. In this case, $ ~= +2 = r, r91= 9Z = r/2;

S12= S23= s2g = Sql = t12 = t23 = t31 =1; and other SZJ = O,

t,, = O. From (16) and (18), we get

n~h2
COSkh z – COS—

h

sin kh ~

m7rx10 m 7rx20
. sin — sin

a
y[e,kg(,,o-.,) + rejkg(,,,+%)]

(21)

LIAL J_13__L
Xjo X20 a x z10 220 z

/2

Fig, 4, Two probes on the same broad wall

Ll+_LL&_
X20 x,~ a x o z~o zl~ z

Fig. 5. Probes of Fig. 4 after posltlon interchange.

This result is the same as [10, eq. (16)]. Because of the

difference in definition of the coordinate systems, the two

equations seem different in form but are identical in value.

If the locations of the two probes in Fig. 4 are inter-

changed, as shown in Fig. 5, then (17) and (19) must used.

Thus

E, M,=~~B2~2(w).,c(w)

ml 1?

M = - [e~k~(’lo-zzo) + I’e/kJ’lll+’m)] (22)

where the sign - represents all terms of (21) except the

terms in brackets. Comparing (21) and (22), we find that

their only difference is due to the change of coordinates.

Obviously, it is this result that we desire to obtain. Setting

m = 1 and n = 0 in (21) and (22), we get the contribution

to the mutual impedance from the dominant mode ~lo.

Example B. Two Probes Vertical to the Opposite

Broad Walls

Let us consider probes 1 and 2 parallel to the y axis

with the coordinates of feed points at (xlo, O, Zlo) and

(X20, b, Z20), respectively, as shown in Fig. 6. For probe 1,
Eulerian angles and matrix elements are as in Example A.

For probe 2, *2= O, 6?2= m/2; t12 = t23 = – 1, tjl =1, and

the other t,, = O. Thus

kqo
ab ~~(-l)n+l -M=—

?)1 ?1
(23)
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0
~lo Xzo ax

btr-h 1{
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Zlo 220 z

Z,,u

4-
02.7r/2 / /#v

0:/’ Y
w+’ ——. —

‘OL
x, Z (;)2=0

N~

Fig. 6. Two probes on the opposite broad walls,

where the sign - represents all terms after double sum-

mations of (21). When n is zero or even, Jhe direction of

tangential component of the mn mode of El along probe 2

in Fig. 4 is the same as along probe 2 in Fig. 6. Because the

current directions of probe 2 in Fig. 4 and 6 are opposite,

the mutual impedances contributed by this mode have

opposite signs. When n is odd, the tangential components

of electric field along the two probes are opposite; hence

mutual impedances are identical.

Example C. Two Probes Perpendicular to the Same

Narrow Wall

Assume that the coordinates of feeding points for the

two probes are (O, Ylo, Zlo) and (0, YZO, ZIO), respective> aS
shown in Fig. 7. Their Eulerian angles are @~= ~z = @l=

62 = ir/2, the matrix elements are S13= sql = tls = tsl = L

S22 = t 22 =1, and the others are equal to zero. Thus

mwh,
COSkhl – COS -

M= ~xx~”

a

g km
sin khlnl 11

mwh2
COS kh ~—COS —

a

sin kh ~

n~Ylo n7Ty20
. sin —

b
sin ~[e,~g(zz,-zl.) + ~eJ~.(ZzO+zlO)]

(24)

Example D. Two Probes Vertical to the Opposite

Narrow Walk

Assume that the coordinates of feeding points for the

probes are (O, ylo, Zlo) and (a, y20,Z20), respectively, as

shown in Fig. 8. For probe 1, the orientational parameters

are as in Example C. For probe 2, $2= – 7r/2, 62 = T/2;

t13 = – 1, t22 = t31 =1, and the other t,~ = O.Thus

kqo
Ub ~~(-l)m+’-M’—

mn

(25)

Fig, 7 Two probes on the same narrow wall.

F+
Z,.

h,

z2.0 ----

hz
z

Fig. 8 Two probes on the opposite narrow walls.

‘:17UL
X,. a x

r’10 11~ I
z

Fig, 9. One probe on the broad wall and one probe on the narrow wall.

where the sign - represents all terms after double sum-

mations of (24).

Example E. Two Probes Perpendicular to Broad and Narrow

Walls, Respectively

Assume that the coordinates of feeding points for the

two probes are (xlo, O, Zlo) and (O, Yzo, 220), respectively, as

shown in Fig. 9. The Eulerian angles and matrix elements

of the two probes are as in Examples A and C, respec-
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~zp

J--E&o

N, 01 J’
QJ~-7r/T ,/ 0;–– T

~/
<

Fig. 10, One probe on the terminal wall and one probe on the broad

wall.

tively. The mutual impedance is given by

nrhl
COS kh ~– COS —

b

sin kh ~

mrhz
COS kh ~ – COS —

a

sin kh ~

mrxlo n 7ry20
. sin — sin ~[e&@ 10) + reJkJ:20+z1d

1a

(26)

Example F. Two Probes Vertical to Terminal and Broad

Walls, Respective@

For simplification, consider r = – 1, that is, the termin-

al plane (z = O) is constructed by a perfect conductor.

Assume that the coordinates of feeding points for the two

probes are (xlO, ylO, O) and (xzo, O, Z20), respectively, as

shown in Fig. 10. For probe 1, the orientational parame-

ters are $1 = – r/2, 191= O; Sll = S22= S33=1, and the

other s,, = O. The parameters for probe 2 are as in Exam-

ple A. Therefore

n~hz
COS kh ~—COS —

b

sin kh ~

m7rxlo n~ylo m VX ~.
. sin — sin — sm —

b
eJkEZzo. (27)

a a

. .
Y

b

b

Yzo ~*

Ylo ---~h,

o x,O ax

Fig. 11. One probe on the termmal wall and one probe on the narrow
wall.

b

D

Yzo ----Thz

Y,o -~hl :

0
Xlo XIO a x

o X,o x~~ ax

m

h, hz

z

Fig, 12. Two probes on the termmal wall.

Example G. Two Probes Vertical to Terminal and Narrow

Walls, Respectively

Again consider r = – 1. The coordinates of feeding point

for the two probes are (xlo, ylo, O) and (O, yzo, Zzo), respec-

tively, as shown in Fig. 11. The orientational parameters of

probes 1 and 2 are as in Examples F and C, respectively.

Hence

(2– ~o)kg.l .
M=– ~zz ~k,k

COSkhl – COSkghl

*1 II g c km sin kh ~

m~hz
COS kh , —COS —.

a

sin kh ~

mvxlo n nylo n ~Y20 k ,
. sin — sin — sin _.__e J ~ 20.

b b
(28)

a

Example H. Two Probes Perpendicular to Terminal Wall

Still consider r = – 1. Assume that the coordinates of
feeding points for the two probes are (xlo, ylo, O) and

(xzo, yzo, O), respectively, as shown in Fig. 12. The orienta-

tional parameters of two probes are as in Example F. Thus

1
M=–—

/
‘2E& dw

Z10120 o
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where

m 77x~. n 7J120
. sin — sin —

a b

“{[COSkw – COS kgw +
k

j~sink(hl–w)coskgw

1 }+cosk(hl – w)coskgw eJkEw– e’kzh’ coskgw .

When III = h ~ = h, the mutual impedance is

m 77x20
. sin — sin YH(k, kg, h)

a
(29)

where

1
H(k, kg, h)=4kz_k:

[

(e’’eh-l)coskh

2k

(

k;
+jx l–—

1]
~ h sin kh

g 2k2 ‘e’ S

1

[

2k;
+ k~ _4k; – ~ + eJh’hcoskgh

()

2k: k
– l–—

k2
cos kh + j f sin kh

1
1

[

k2
+— –—

Sk’ k~–k: + e-J2kzh + j2kgh

k:
+———————

k2–k2
cos2kh

g

,kg(2k2 – ‘;) sin2k/1

‘~ k(k&k:) 1
1

+ 8kz(kz_+)
[-k;(~+e-’zk~)

+2k2(e’’~h coskgh+cos2kh)]

+ ~(coskgh -coskh)e’kh. ‘-
g

From (24)–(29), it is seen that the contribution to the

mutual impedance from the dominant mode HIO is zero in

Examples C–H. The higher order modes are the evanes-

cent modes. Because these modes decay exponentially with

the distance between probes, the major contribution to the

mutual impedance is from the dominant mode Hlo. How-

ever when the distance becomes small, the higher order

modes may provide a large value of the mutual impedance.

In over-moded guide, the mutual impedance

higher order modes will be of interest.

VI. CONCLUSIONS
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from the

The mutual impedance between two probes in a semi-

infinite rectangular waveguide has been developed. It may

be seen that the mutual impedance is dependent not only

on the probe lengths, orientations, and separation distance,

but also the waveguide sizes, the dielectric material, and

the terminal reflection coefficient. The method used in this

paper is general and can be used to solve similar problems

in waveguides of different cross section and also for cavity

resonators.

This paper only analyzes infinitely thin probes. How-

ever, the results are also useful in the calculation of posts

with definite thickness by using the wire-grid model [18].
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