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Mutual Impedance between Probes
in a Waveguide

BAISUO WANG

Abstract —The general formulas of mutual impedance between two
probes arbitrarily located in a rectangular waveguide are given by means of
dyadic Green’s function (DGF), field transformation, and reaction concept.
The waveguide is semi-fininite. The reflection coefficient at the terminal
plane (- =0) is I'. Lengths, feeding points, and orientations of the two
probes in the waveguide are all arbitrary. As examples, expressions of
mutual impedance for eight specific cases are given and discussed.

I. INTRODUCTION

N IMPORTANT PROBLEM in the design of wave-

guide components is the analysis of postlike struc-
tures in a waveguide. The problem has been studied by
many researchers [1]-[9]. Most investigators have been
interested mainly in current distributions or equivalent
impedances of posts. The mutual impedance between two
probes vertically located on the broad wall of rectangular
waveguide was studied recently by Ittipiboon and Shafai
[10] using the vector potential 4 and reaction concept. The
above investigations are extremely useful in designing mi-
crowave circuits, various filters, and antennas with specific
uses.

In this paper, the probe field distribution and mutual
coupling have been studied in detail. The general formulas
of mutual impedance between probes are given. In deriva-
tion, the DGF, field transformation, and reaction theorem
are used. The waveguide is semi-infinite. The reflection
coefficient at the terminal plane (z = 0) is I'. The lengths,
feeding points, and orientations of the two probes in the
waveguide are all arbitrary.

II. Tur Dyapic GREEN’S FUNCTION

The problem to be considered is shown in Fig. 1. Two
probe antennas, arbitrarily oriented, are located in a rect-
angular waveguide. Suppose the waveguide is of size a X b
and is filled with air (p, €,). The DGF G of the first kind
pertaining to the waveguide under study satisfies

v xv XG(F,7) = k*G(F, 7"y =I8(F—F) (1)

where k is the free-space wavenumber, I is the unit
dyadic, r(x, y, z) is the field point, and r'(x’, y’, z') is the
source point. G satisfies the boundary conditions A X G =0
on the guide walls (perfect conductor) (7 being the unit
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vector normal to guide walls), the reflection condition on
the terminal plane, and the radiation condition as z — c0.
The G may be constructed by using image theory because
the terminal plane (z=0) with reflection coefficient I'
may be substituted by an image source [§8), [9], [11]. With
reference to Fig. 2, the original and the image current
elements are, respectively,

!
Fl=——(2+9+2)0(F=7") (2)
Joko :

?*_\,__F__,\,A_A 7 7
J,(r,)—jwuo(ﬁy 2)e(r—7) (3)

where j is an imaginary number. The position vector of
the image source is

Fr=%x/+ Py, + 8z ="+ Py’ + Py — £’ 4)
1 1 yl 1

The semi-infinite waveguide with terminal reflection coef-
ficient I' and current source j(F’) is equivalent to a bi-
igfinije waveguide without terminal plane and with sources
= JF)+ J (7).
T he G,(F,7') pertaining to a bi-infinite waveguide
without terminal and with source j(F "y is [12]-{15]

2’_80
k k2

[ Mo heg) ML, (F Ky)

+N0mn( kg)ﬁ()’mn(¢kg)], Z%Z’ (5)

where k, = [(mn/a)? +(nn/b)*]"/ and k= (k? — k2)'/?
are the eigenvalue and wavenumber of the rectangular
waveguide, respectively. Kronnecker §,=1 for m or n=0
and 0 for m and n+# 0. In _the region where z >0, the
G,, (¥, 7') corresponding to j,(r’) is

Go: 7‘)=—ZZ

k k2
: [Memn(+ kg)ﬁt’emn(— kg)

+ Nown(+ k) N = kg)- (6)
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Fig. 1

Two probes in waveguide.

Fig. 2. The onginal and the image current elements.

In view of (2)~(4), (70, can be rewritten. The final expres-
sion for G(7, F') is given by

N 2-34,
=——8(F—r )zz+;1;§:zn: s
[ Mo (2 ) M (F Ke)

+rMemn(+k ) emn(+kg)
+N0mn(+k) 0mn(+kg)

- 1-‘]\'—f()m;1(_+_ kg)]v()lmn(“}— kg)]

1 — 8
=—P8(r—r’)zz+ Zm %

[Xkam cs cs(el+re2)+‘xykmn cs sc(€1+r62)

+ X2k (+€1 I-‘62)-}-)},\)"\kmn sc cs(5’1+rez)

gm cs ss

+yykkn s sc(el+re2)+y2kgn s¢ ss(+e1—re2)

+ 2%k

gm ss cs

(+ € I‘IeZ)_*_ Zykgn s sc(+ € reZ)

+ 25K2T T (e, —

cTssTsSs

Te,), 227 (7)

where
max nwy max'  nwy'
— [
T,, =cos sin b T." =cos p sin b
. max nwy - max’ nay'
T,.=sin cos— T, =sin cos
a b a b
. max  Amy  mmx’  nwy’
T, =sin sin—— T, =sin sin
‘ b a b
Lt k=2 _ ik (242
e, =ex /N e, =e’
, mar , (AT 2
k/xm:l‘k- a kknzk — —b
mar na
Kgm=Jkg—= kg™ Jhy7-
mna? .
kmn == k*=w Ho€o-
ab

II1. FieLbp }f RADIATED BY PROBE 1

The coordinate system of probe 1 is Oy(&.m,{). as
shown in Fig. 1. {, and ¢, are the endpoints and {, is the
feeding point. In the O system, the coordinates of point O,
are (Xpg, Y19» 210)- Assume that the current distribution of
probe 1 is given by

J(§) =$18(£)8(n) (8a)

sink(¢=18,)
o 1om, $<i<, .
! sink(&-¢) (8b)
AN

where I}, is the value of the current at the feeding point.
The electric field radiated from probe 1 is

= = = . H= o
By = jono [ G-ido = oo [“G-Ehds - (9)

Through tedious treatment of (9), the field E, for z > 2z’ is
found to be

E. = Z Z(Sl AT

cs + SIAZAZT;L' + S1>3A3
m n

E, = Z Z(Sz AT

o T84T+ 5,34,
m 124

E.=} 2(5’3 14

1 i

T,,)F(z)
T, )F(z)
T+ 83,4515, +553.34;T,) F(z2). (10)

The field distribution for z <z’ is

E = Z Z(Sl 1B T+ 51,81, +Sl‘3B3T’s§)F(+ FZ)
E = Z Z(Sz 1BiT, +5:,BT .+, 3B3Tss)F(+rz>
I 1
E. =YY (s3.B T, + 53 BT, + 535 3BT, ) (- Tx)
, (11)
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where

F(z)=e**  F(+Tz)=e /%" + ek’

3
S, =8, Z SikS ks i, j=1,2,3
k=1
is the summation of corresponding term products of the
ith row and the jth row in matrix (s). (s) is a transforma-
tion between O and O, systems. Its elements are

s = —siny, cosf; s, =—cosy; s;3=siny;sinf;
4y = COS Y, COS b, $yy=—Siny; S,3=—cosy;sinf;
§3, = sinf, 53,=0, $33 =088,

where ¥, ¢,, and 6, are Eulerian angles, as shown in Fig.
3 [16], [17]. for simplification, ¢, has been chosen as 7,2,
that is, the axis 7 is along the nodal line, directed to
NT@. Between two coordinate systems, (E,, E,, E,) =
(s)E E,. E.)' and (x = X0, Y ~ V10> £~ z39)" =
(s)(&,m.¢)", where ¢ indicates the transpose. Parameter of
(10) and (11) are as follows:

A] 2— 8 kkm kmn kgm S13Pcs
Ay | =~ n_l(} k 2 Ko Ken kg" P2y 9
P |
A3 8 — kgm — kgn kcz S35
(12)
B, s Kim Kmn  —Kgm 5130Q.cs
B, | =~ n_z k 2 kmn Kin K || 550,
B3 a g gm kgn kcz s33st

(13)
1
Pu= g f (5 (T €

1

Pu= 7 [ OIS+ TO &
1

Pss= Z‘/;l Il’rss(g‘)f(_rg)d{
1 /¢

Q('&' = ;_/gtl Ichs(gl)f({) dg

1o
st =7 Il’rsc(g)f(g) d§

1 g
) Q.= 3 [ I (O£() at

mm . nw
"'cAs(g) = €08 —a’(5‘13§ + Xy) sin _b—(523§ + y10)

. mm nw
”'.u(() = sm —a—(s13§+ X10) €OS “b—(523§ + y10)

. mm . n7
7,,(§) = sin 7(313§ + 3?10)5111 _b’(sz3§ + y1o)
f( + I‘é‘) = e_Jkg(533§+210) + I‘ejkg(533§+210)
12

f(§) = g/kslonita0) No= (“0/50) -

By means of triangular formula, these integrals for P and
O can be readily evaluated.
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Fig 3.

Eulerian angles.

IV. MuTUAL IMPEDANCE

In order to calculate mutual impedance, we must de-
termine the tangent component of E; along probe 2. With
reference to Fig. 1, the coordinate system of probe 2 is
O,(u,v,w). w, and w, are endpoints, and w, is the feeding
period point. The coordinates of point O, in O system are
(X120, Y20, Z20)- The current distribution of probe 2 is simi-
lar to that of probe 1(eq. (8)), that is,

T (w) = w3 (u)8(v) (14a)
sink(w —w;)
2 gink(w, — ’ ISWSW
= (w,—wy) (14b)

sin k(w; —w)
—_— w, < W< Wy
2 sin k(wy — w,) 2T
The transformation between the O and O, systems also
adopts Eulerian angles ({5, ¢, = 7/2, 6,). The transforma-
tion matrix is signed as (¢). The elements of matrix (¢) are
similar to those of matrix (s), that is

fyy=—siny,cos8, t,,=—cosy, t;3=siny,sinb,
1y =c0SY,yco80, tp=-—siny, In=-—cosy,sind,
ty; =siné, t3,=0 ty;=cosb,.

The tangential component of El along probe 2 is given by
(15)

Because u = v = 0 on probe 2, the variables (x, y, z)in E,,
E,, and E, should be changed as follows:

y=tyuw+ ¥y
Through evaluation, we get, for z> 2/,

En=X X [Alal(w)’rcs(w)+742a2(w)'rsc(w)

+ Az (w) 7, (w)] - (16)

Ey,=E-w=1,E, +15E, + ..

X =13w + Xy Z=1[33W+ Zy.

whereas for z <z’

Ep =Y L[ BiB(w) 7, () + By By (w) 7 e(w)

m n

+ BBy (w)t,(w)]  (17)
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where
a(w) sia spq s3q\ [ fhaf(w)
ay(w) | = (51 2 S22 53-2) toaf(w) (18)
az(w) s T2 Sl (w)
Bi(w) S0 Saq 83\ [ faf(+Tw)
By(w) | = (Sl~2 $3.2 s3,2) tuf(+Tw) | (19)
By(w) Sta Fas s )y f(—Tw)

7., (w) = cos

mm _onw
7([13“’ + X4) sin 7(1‘23‘4’ + ¥x)

. omw na
Tu(w) = sm 7(113“’ + xzo)COS _(t23W + Y20)

mm
T (W) —sm—(l13w+x20)sm (123W+J’20)

f( + I‘w) = @ Tkg(133w+25) + I‘e/kg(f33W+lzo)
f(w) — e/k (t3zw+z 40)

By the reaction concept, the mutual impedance between
two probes is given by
M=—

— f Ey, I, dw (20)

110120 wy
where E|,, is given by (16) or (17), and I, is given by (14).
The time factor used is e™/“". If we desire to adopt e™/*,
we need only replace j by — J in all formulas.

V. SoMg SPECIFIC CASES

As examples, we discuss some useful cases. In the dis-
cussion below, suppose that the feeding points of two
probes are coincident with O; and O,, respectively. The
heights are 7, ={, —§{,(6=0=0), hy=w;—wy(w, =w,
= 0), respectively.

Example A: Two Probes Perpendicular to the Same
Broad Wall

Suppose two probes are parallel to the y axis, with their
feeding points at (x,4,0, z;5) and (x,,0, z,,), respectively,
as shown in Fig. 4. In this case, ¢, =y, =m, 8, =0, = 7/2;
S12 = S93 =833 =583 =113 =13 =13 =1; and other 5, =0,
t,,=0. From (16) and (18), we get

= Z ZAzaz(W)Tsc(W)
—-Rrri

kkn s Tse(W) f(w)

nwhy

g

2-8, cos kh, —cos

k ok,

nwh,

k"lo ZZ

m n

sin kh,

cos kh, ~—cos

sin kh,

. MTXye |
-sin sin
a a

MITX 5

[e.lkg(lzo—zlo) + Pejkg(zlo-“—zlo)].

(21)

4 V7
b b
Ih, h, lhl b,
O P
z &
N,
6,=0,=n/2
vl
c,w

nv \OR

Fig. 4. Two probes on the same broad wall

¥y y
b b
h 2 I h 1 lhz I h {
0 ! -
XZD X 0 a X o) Z 10 Z o Z
Fig. 5. Probes of Fig. 4 after position interchange.

This result is the same as [10, eq. (16)]. Because of the
difference in definition of the coordinate systems, the two
equations seem different in form but are identical in value.
If the locations of the two probes in Fig. 4 are inter-
changed, as shown in Fig. 5, then (17) and (19) must used.
Thus

E. = Z ZBz.Bz(W)Tsc(W)

m R

SL S(_(w)f(+ Fw)

kn
m n

M= (22)

where the sign ~ represents all terms of (21) except the
terms in brackets. Comparing (21) and (22), we find that
their only difference is due to the change of coordinates.
Obviously, it is this result that we desire to obtain. Setting
m=1 and »=0 in (21) and (22), we get the contribution
to the mutual impedance from the dominant mode H,j,.

~ [ejkg(lm“zzo) + Te lkg(—"l()+zzo)]

Example B. Two Probes Vertical to the Opposite
Broad Walls

Let us consider probes 1 and 2 parallel to the y axis
with the coordinates of feed points at (x,.0, z,4) and
(x40, b, z4), Tespectively, as shown in Fig. 6. For probe 1,
Eulerian angles and matrix elements are as in Example A.
For probe 2, ¢, =0, 8,=7/2; t;, =t,,=—1, t;;=1, and
the other 7, = 0. Thus

kno

ZZ n+1~

m n

(23)
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Iy Iy
b 1 b
Ihz th/
] b
O T, 2 x Y 2, 22, 2

Fig. 6. Two probes on the opposite broad walls.

where the sign ~ represents all terms after double sum-
mations of (21). When » is zero or even, the direction of
tangential component of the mn mode of E1 along probe 2
in Fig. 4 is the same as along probe 2 in Fig. 6. Because the
current directions of probe 2 in Fig. 4 and 6 are opposite,
the mutual impedances contributed by this mode have
opposite signs. When n is odd, the tangential components
of electric field along the two probes are opposite; hence
mutual impedances are identical.

Example C. Two Probes Perpendicular to the Same
Narrow Wall

Assume that the coordinates of feeding points for the
two probes are (0, 10, 210) and (0, 5, Z10), TESPeCtively, as
shown in Fig. 7. Their Eulerian angles are ¢, =y, =40, =
6, =7/2, the matrix elements are s;; =53 =13 =13 =1,

,, =15, =1, and the others are equal to zero. Thus

mwh;,

2-5, 08 kh, —cos

kgkkm

M=y y

m n

sin kh,

mah,

cos kh, —cos
a

sin kh,

nmw nmw
-sin __._').)1_0 sin ____yZ_O [ejkg(zzo‘zlo) + I‘e.lkg(220+210)]'
b

b
(24)

Example D. Two Probes Vertical to the Opposite
Narrow Walls

Assume that the coordinates of feeding points for the
probes are (0, yq0, 210) and (a, Yy, Z5), Tespectively, as
shown in Fig. 8. For probe 1, the orientational parameters
are as in Example C. For probe 2, ¢, = —u/2, 0, =7/2;
ti3=—1, ty =13 =1, and the other ¢,, = 0. Thus

il LT (-1 (25)
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V2o

¥ 1]

h,

Fig. 8 Two probes on the opposite narrow walls.

i
b
Yon
h,
0 ~—
X & X
ax
o %Clo -
Zyop-—~=~—— -‘h|
Zlo—-l-l-:
2

Fig. 9. One probe on the broad wall and one pfobe on the narrow wall.

where the sign ~ represents all terms after double sum-
mations of (24).

Example E. Two Probes Perpendicular to Broad and Narrow
Walls, Respectively

Assume that the coordinates of feeding points for the
two probes are (x,,,0, z,5) and (0, y,4, z4), respectively, as
shown in Fig. 9. The Eulerian angles and matrix elements
of the two probes are as in Examples A and C, respec-
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Y y
b b
YioF —oh 7! S—
io T | 10 I, ;
I 2
© Xie X8 X 0 Z0 Z

Fig. 10. One probe on the terminal wall and one probe on the broad
wall.

tively. The mutual impedance is given by

nwh,

kno iy s 5. (2-8)k,, kh, —cos
ab T kgkpkp, sin kh,
mah,
cos kh, —cos
a
sin kh,
. max nT
-sin 0 sin Y20 [e!kg(zzo—zm) + I‘ejkg(h'zo"'zm)]‘
a b

(26)

Example F. Two Probes Vertical to Terminal and Broad
Walls, Respectively

For simplification, consider I'=—1, that is, the termi-
nal plane (z=10) is constructed by a perfect conductor.
Assume that the coordinates of feeding points for the two
probes are (xy4. ¥10.0) and (x,,.0, z,,), respectively, as
shown in Fig. 10. For probe 1, the orientational parame-
ters are ¢, =-—7/2, 6;=0; 5;;=25y =53;3=1, and the
other s, = 0. The parameters for probe 2 are as in Exam-
ple A. Therefore

X naw
1w % . &gn S8 a COS b
6kmn, (2—8 )k, coskh,—coskh,

3 -
ab U kkiky, sin kh;
nah,
cos kh, —cos
sin kh,
. MTXyy | NTYyy . MTAXy
-sin i e/ks?0, (27)

a b a

y
b
y S —
20 h’_
Yil~--+h,
L
0 X0 ax
h,
h,
7 gof—
Z
Fig. 11. One probe on the terminal wall and one probe on the narrow
wall.
y
b
Vaof- - - - - Th,
i
ylo" __'Ih' I
0 | ] —
Xio Xy &X
0 —%Xiwo_Xaio a x
h[ Ihl
Z

Fig. 12. Two probes on the termnal wall.

Example G. Two Probes Vertical to Terminal and Narrow
Walls, Respectively

Again consider I' = —~ 1. The coordinates of feeding point
for the two probes are (x4, y14,0) and (0, yy, z,,), TESPEC-
tively, as shown in Fig. 11. The orientational parameters of
probes 1 and 2 are as in Examples F and C, respectively.
Hence

6kn0 (2—8,)k
ZZ k k2k

m n ghe™km

cos khy —cosk hy
sin kh;

gm

mah,

cos kh, —cos

sin kh,

maXxy . ATV . ATy o
sin sin e’ et

a b b

-sin

(28)

Example H. Two Probes Perpendicular to Terminal Wall

Still consider I'= —1. Assume that the coordinates of
feeding points for the two probes are (x,,, ¥;0.0) and
(X505 Y20-0), respectively, as shown in Fig. 12. The orienta-
tional parameters of two probes are as in Example F. Thus

M= -

h2
E, I, dw
110120/0 2
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where
£ - 6110710 ZZ 8, sin M7 X109 sin n7TY10
In
absinkh, a b
. MTXy n'”)’zo
-sin sin

b

k
-{[coskw —cosk w + jf sin k(hy —w)cosk w

+cosk(hy—w)cosk w|e/s” —e/* cos kgw}.

When h; = h, = h, the mutual impedance is
6kmny 8o sin MmaXy . N7
~ absin? khZZ k, a o b
mmX n
-sin 2 g 2 b kyoh) (29)
a .
where
H(k.k, h)=—F—=](e/*" -
(k.k, h) 4k2—k§ (e 1) coskh
+ 2k 1 k kst | sin kh
Jkg Y= sin
2 .
__+ Jhgh
k —4k2 w2 e cosk h
k,
coskh+]? sin kh
k2
+.~_ — + —J2kgh .
2 kz—ké e + j2kh
5
+k myE: cos2kh
k (2k? - k2
+1¥ sin2kh
k(k>-k2)

+ W [ - k;(l + omI2kn)

+2k2( e/ cos k gh +cos2kh )|

1
+ ;2—:72 (cosk i —cos ki) e k",

From (24)-(29), it is seen that the contribution to the
mutual impedance from the dominant mode H,, is zero in
Examples C—-H. The higher order modes are the evanes-
cent modes. Because these modes decay exponentially with
the distance between probes, the major contribution to the
mutual impedance is from the dominant mode H,,. How-
ever when the distance becomes small, the higher order
modes may provide a large value of the mutual impedance.

59

In over-moded guide, the mutual impedance from the
higher order modes will be of interest.

VI. CONCLUSIONS

The mutual impedance between two probes in a semi-
infinite rectangular waveguide has been developed. It may
be seen that the mutual impedance is dependent not only
on the probe lengths, orientations, and separation distance,
but also the waveguide sizes, the dielectric material, and
the terminal reflection coefficient. The method used in this
paper is general and can be used to solve similar problems
in waveguides of different cross section and also for cavity
resonators.

This paper only analyzes infinitely thin probes. How-
ever, the results are also useful in the calculation of posts
with definite thickness by using the wire-grid model [18].
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